Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Linear Algebra-I

Subject Code : 4SC03MTC2

Branch : B.SC (Mathematics, Physics)

Semester :3 Date :5/12/2015 Time :2:30 To 5:30 Marks :70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) True/false: Union of two subspaces is also subspace.
- **b**) What are the standard basis of R^4 ?
- c) If $V=R^+$ and $x + y = x \cdot y$, $k = x^k$ is vector space then write the zero element of V.
- **d**) Write the matrix of linear transformation which is responsible for reflection with respect to y axis.
- e) What is inner product Space?
- **f**) True/false: $\begin{bmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{bmatrix}$ is the matrix of linear transformation which is responsible for rotation by an angle θ .
- g) Define norm of vector in inner product space .
- **h**) Are $(8, \frac{2}{3}, -1)$ and $(-4, -\frac{1}{3}, \frac{1}{2})$ are linearly dependent ? Justify your answer.
- i) Write the basis of \mathcal{P}_2 .
- **j**) What is dimension of vector space?
- **k**) True/false: if W is subspace of finite dimensional vector space then $\dim W \leq \dim V$.
- **I)** Find the angle between (1,2,0) and (-2,1,5).
- **m**) Define kernel of linear transformation.
- **n**) What is span of (1,0) and (0,1)?

Attempt any four questions from Q-2 to Q-8

Q-2Attempt all questions(14)a)Which of the following are subspace of V.
 $(1) W=(a,b,c) / a \ge 0$ V=R³.

Page 1 || 3

		(2) W=(a,b,c) / $a = 0$ } V=R ³ . (3) W=(a,b,c) / $ab = 0$ } V= R ³ . (4) W=(a,b,c) / $\sqrt{3}a = \sqrt{5}b$ } V= R ³	
	b)	Define vector space and show that R^n is a vector space .	(6)
Q-3	`	Attempt all questions	(14)
	a)	If V is vector space and W_1 , W_2 are two subspace of V then show that $W_1 \cap W_2$ and $W_1 + W_2$ is also subspace of V.	(8)
	b)	Define subspace of vector space. Let V is vector space $W \subset V$. then show that W is	(6)
0.4		subspace of V if and only if α u+ $\beta v \in W$ for all α , $\beta \in R$ and u, $v \in W$.	(14)
Q-4	a)	Attempt an questions Examine the sub-sets of \mathbb{P}^3 are 1. Described as	(14)
	a)	$(1) \{ (1, 2, 1), (-1, 1, 0), (5, -1, 2) \}$	(0)
		(1) {(1,2,1),(-1,1,0)} (2) {(1,2,1),(-1,1,0)}	
	b)	Check whether (1,2,4), (1,5,4), (0,1,2) \in span A	(6)
		Where A={ (0,1,-1) ,(0,0,2) ,(1,3,0) }.	
	c)	Define span of {u,v}	(2)
0-5		Attempt all questions	(14)
C	a)	Check which of the following are L.T.?	(6)
		(a) T: $R^2 \rightarrow R^3$, T(x,y)=(x,xy,x ² y) (b) T: $R^3 \rightarrow R^3$, T(x,y,z)=(x+y,y+z,z-y)	
	b)	Prove that for any two vectors $x, y \in V$ $ x + y ^2 + x - y ^2 = 2(x ^2 + y ^2)$.	(4)
	c)	Show that V=C[0,1] with $\langle f, g \rangle = \int_{0}^{1} f(t)g(t)dt$ is an inner product space.	(4)
Q-6		Attempt all questions	(14)
	a)	State and prove rank -nullity theorem.	(8)
	b)	Examine the sub sets of C[0,2 π] are L.D or L.I.	(6)
		(1) { sinx , cosx , e ^x }	
		(2) { x , x^2 , x^3 }	
Q-7		Attempt all questions	(14)
	a)	Verify rank nullity theorem for $T: R^4 \rightarrow R^2$ such that	(6)
		$T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$	
	b)	If T:V \rightarrow W is linear transformation. Then show that	(6)
		(a) $T(0) = 0$	
		(b) $T(-u) = -T(u)$	
		(c) $I(u-v) = I(u)-I(v)$	
	c)	Define direct sum of two subspaces.	(2)

Page 2 || 3

Q-8	Attempt all questions	(14)
a)	Prove that {(1,2,1),(2,1,0),(1,-1,2)} forms a basis of R ³ .	(6)
b)	If v, v_1 , v_2 ,, v_n are vectors of vector space V .v is linear combination of v_1 , v_2 ,, v_n then show that { v, v_1 , v_2 ,, v_n } is L.D.	(6)
c)	State Pythagorean theorem in inner product space.	(2)

Page 3 || 3

